It took some time to achieve the product I was looking for, but we eventually got there. I do feel like a lot of hard work was put into this, and it even exceeded the page requirement. I'm pretty pleased overall. I give my thanks.
fRefer to Exhibit 133. The mean square between treatments (MSTR) equals1. In a simple linear regression problem with 10 observations (sample size = n = 10). There are 6 unique observations. ANOVA table is gathered to see if simple regression equation is significant. Another ANOVA test is conducted to see if linear relationship is adequate. For these two problems degrees of freedom total, regression, error, lack of fit, pure error are:
[removed] 
10, 1, 9, 4, 5 

[removed] 
9, 1, 8, 4, 4 

[removed] 
9, 1, 8, 3, 5 

[removed] 
9, 1, 8, 5, 3 
2. You wish to add a categorical explanatory variable with three categories to a regression model. How many dummy variables are required to represent the categories?
[removed] 
one 

[removed] 
two 

[removed] 
three 

[removed] 
four 
3.
3. 3 categories and 10 observations per category, SSE = 399.6, MSE =
a. 133.2
b. 13.32
c. 14.8
d. 30.0
4. The critical F value with 6 numerator and 60 denominator degrees of freedom at a = .05 is
[removed] 
3.74 

[removed] 
2.25 

[removed] 
2.37 

[removed] 
1.96 
5. Exhibit 141A regression analysis resulted in the following information regarding a dependent variable (y) and an independent variable (x).
Sum (x) = 30
Sum (x^{2}) = 104
Sum (y) = 40
Sum (y^{2}) = 178
Sum (x)(y) = 134
n=10
Refer to Exhibit 141. The least squares estimate of b_{1} equals
[removed] 
1 

[removed] 
1 

[removed] 
2 

[removed] 
2 
6. In a regression analysis if SST=4500 and SSE=1575, then the coefficient of determination is
[removed] 
0.35 

[removed] 
0.65 

[removed] 
2.85 

[removed] 
0.45 
7. Exhibit 131
SSTR = 6,750 
H_{0}: m_{1}=m_{2}=m_{3}=m_{4} 
SSE = 8,000 
H_{a}: at least one mean is different 
n_{T} = 20 

Refer to Exhibit 131. The mean square within treatments (MSE) equals
[removed] 
400 

[removed] 
500 

[removed] 
1,687.5 

[removed] 
2,250 
8. Exhibit 131
SSTR = 6,750 
H_{0}: m_{1}=m_{2}=m_{3}=m_{4} 
SSE = 8,000 
H_{a}: at least one mean is different 
n_{T} = 20 

Refer to Exhibit 131. The null hypothesis is to be tested at the 5% level of significance. The critical value from the table is
[removed] 
2.87 

[removed] 
3.24 

[removed] 
4.08 

[removed] 
8.7 
9. Exhibit 133
To test whether or not there is a difference between treatments A, B, and C, a sample of 12 observations has been randomly assigned to the 3 treatments. You are given the results below.
Treatment 
Observation 

A 
20 
30 
25 
33 
B 
22 
26 
20 
28 
C 
40 
30 
28 
22 
Refer to Exhibit 133. The test statistic to test the null hypothesis equals
[removed] 
0.944 

[removed] 
1.059 

[removed] 
3.13 

[removed] 
19.231 
10. Exhibit 133
To test whether or not there is a difference between treatments A, B, and C, a sample of 12 observations has been randomly assigned to the 3 treatments. You are given the results below.
Treatment 
Observation 

A 
20 
30 
25 
33 
B 
22 
26 
20 
28 
C 
40 
30 
28 
22 
Refer to Exhibit 133. The mean square between treatments (MSTR) equals
[removed] 
1.872 

[removed] 
5.86 

[removed] 
34 

[removed] 
36 
11. Exhibit 131
SSTR = 6,750 
H_{0}: m_{1}=m_{2}=m_{3}=m_{4} 
SSE = 8,000 
H_{a}: at least one mean is different 
n_{T} = 20 

Refer to Exhibit 131. The test statistic to test the null hypothesis equals
[removed] 
0.22 

[removed] 
0.84 

[removed] 
4.22 

[removed] 
4.5 
12. Exhibit 131
SSTR = 6,750 
H_{0}: m_{1}=m_{2}=m_{3}=m_{4} 
SSE = 8,000 
H_{a}: at least one mean is different 
n_{T} = 20 

Refer to Exhibit 131. The null hypothesis
[removed] 
should be rejected 

[removed] 
should not be rejected 

[removed] 
was designed incorrectly 

[removed] 
None of these alternatives is correct. 
13. In regression analysis if the dependent variable is measured in dollars, the independent variable
[removed] 
must also be in dollars 

[removed] 
must be in some unit of currency 

[removed] 
can be any units 

[removed] 
can not be in dollars 
14. A regression analysis between demand (y in 1000 units) and price (x in dollars) resulted in the following equation
y cap = 9 – 3x
The above equation implies that if the price is increased by $1, the demand is expected to
[removed] 
increase by 6 units 

[removed] 
decrease by 3 units 

[removed] 
decrease by 6,000 units 

[removed] 
decrease by 3,000 units 
15. Exhibit 141
A regression analysis resulted in the following information regarding a dependent variable (y) and an independent variable (x).
n = 10
Sx = 55
Sy = 55
Sx^{2} = 385
Sy^{2 }= 385
Sxy = 220
Refer to Exhibit 141. The point estimate of y when x = 20 is
[removed] 
0 

[removed] 
31 

[removed] 
9 

[removed] 
9 
Coefficient of determination = +1
16. Exhibit 141A regression analysis resulted in the following information regarding a dependent variable (y) and an independent variable (x).
Sum (x) = 30
Sum (x^{2}) = 104
Sum (y) = 40
Sum (y^{2}) = 178
Sum (x)(y) = 134
n=10
Refer to Exhibit 141. Interpret the yintercept.
[removed] 
The estimated value of x is 1 if y is 0. 

[removed] 
The estimated value of y is 1 if x is 0. 

[removed] 
The estimated increase in y is 1 for each additional unit of x. 

[removed] 
The estimated increase in x is 1 for each addition unit of y. 
17. You are given the following information about y and x.
y 
x 
Dependent 
Independent 
5 
15 
7 
12 
9 
10 
11 
7 
Refer to Exhibit 142. The least squares estimate of b_{0} equals
[removed] 
7.647 

[removed] 
1.3 

[removed] 
21.4 

[removed] 
16.41176 
18. Exhibit 142You are given the following information about y and x.
y 
x 
Dependent 
Independent 
5 
15 
7 
12 
9 
10 
11 
7 
Refer to Exhibit 142. The coefficient of determination equals
[removed] 
0.99705 

[removed] 
0.9941 

[removed] 
0.9941 

[removed] 
0.99705 
19. Exhibit 143
Regression analysis was applied between sales data (in $1,000s) and advertising data (in $100s) and the following information was obtained.
y cap = 12 + 1.8 x
n = 17
SSR = 225
SSE = 75
s_{b1} = 0.2683
Refer to Exhibit 143. Based on the above estimated regression equation, if advertising is $3,000, then the point estimate for sales (in dollars) is
[removed] 
$66,000 

[removed] 
$5,412 

[removed] 
$66 

[removed] 
$17,400 
20. Exhibit 143
Regression analysis was applied between sales data (in $1,000s) and advertising data (in $100s) and the following information was obtained.
y cap = 12 + 1.8 x
n = 17
SSR = 225 SSE = 75
s_{b1} = 0.2683
Refer to Exhibit 143. The t statistic for testing the significance of the slope is
[removed] 
1.80 

[removed] 
1.96 

[removed] 
6.709 

[removed] 
0.555 
21. The following results were obtained as a part of simple regression analysis:
r^{2} = .9162
F statistic from the Ftable = 3.59
Calculated value of F from the ANOVA table = 81.87
alpha = .05
pvalue = .0000
The null hypothesis of no relationship between the dependent variable and the independent variable
[removed] 
is rejected 

[removed] 
cannot be tested with the given information 

[removed] 
is not rejected 

[removed] 
is not an appropriate null hypothesis for this situation 
22. The degrees of freedom error (within group variation) of a completely randomized design (one way ANOVA) test with four groups (treatments) and 15 observations per each group is:
[removed] 
3 

[removed] 
56 

[removed] 
59 

[removed] 
14 

[removed] 
4 
23. When computing an individual confidence interval using t statistic for comparing more than two means and if we do all possible pairwise comparisons of means, the experimentwise error rate will be
[removed] 
equal to alpha 

[removed] 
less than alpha 

[removed] 
greater than alpha 

[removed] 
may be less than or greater than alpha 
24. After analyzing a data set using oneway analysis of variance, the same data is analyzed using a two factor, full factorial design ANOVA model with two observations per cell. The F statistic for the treatment in the one way ANOVA is ______________________ smaller than the F statistic for treatment in the twofactor full factorial design ANOVA model.
[removed] 
always 

[removed] 
sometimes 

[removed] 
never 

[removed] 
25. In a latin Squares design ANOVA with 6 treatments, total degrres of freedom and degrees of freedom error are:
[removed] 
36,21 

[removed] 
15,10 

[removed] 
35,20 

[removed] 
35,5 

[removed] 
36,6 
26. Which of the following is not a major assumption of the simple regression model:
[removed] 
Independence of error terms 

[removed] 
Nominal data 

[removed] 
Normal distribution of the variables 

[removed] 
Equal (constant) variances 
27. A candy bar manufacturer is interested in trying to estimate how sales are influenced by the price of their product. To do this, the company randomly chooses 6 small cities and offers the candy bar at different prices. Using candy bar sales as the dependent variable, the company will conduct a simple regression analysis on the data below.
City Price, ($) Sales
River Falls 1.20 100
Hudson 1.60 90
Ellsworth 1.80 90
Prescott 2.00 40
Rock Elm 2.40 38
Stillwater 3.00 32
Using least squares regression, what is the estimated slope parameter for the candy bar price and sales data?
[removed] 
40.00 

[removed] 
48.193 

[removed] 
43.40 

[removed] 
3.81 

[removed] 
28.07 
28. A candy bar manufacturer is interested in trying to estimate how sales are influenced by the price of their product. To do this, the company randomly chooses 6 small cities and offers the candy bar at different prices. Using candy bar sales as the dependent variable, the company will conduct a simple regression analysis on the data below.
City Price, ($) Sales
River Falls 1.20 100
Hudson 1.60 90
Ellsworth 1.80 90
Prescott 2.00 40
Rock Elm 2.40 38
Stillwater 3.00 32
What proportion of the variation in candy’s sales price is explained by the simple linear regression equation?
[removed] 
76.6% 

[removed] 
67.2% 

[removed] 
67.4% 

[removed] 
78.0% 

[removed] 
72.9% 
29. A candy bar manufacturer is interested in trying to estimate how sales are influenced by the price of their product. To do this, the company randomly chooses 6 small cities and offers the candy bar at different prices. Using candy bar sales as the dependent variable, the company will conduct a simple regression analysis on the data below.
City Price, ($) Sales
River Falls 1.20 100
Hudson 1.60 90
Ellsworth 1.80 90
Prescott 2.00 40
Rock Elm 2.40 38
Stillwater 3.00 32
What is the standard error of estimate?
[removed] 
20.09 

[removed] 
15.29 

[removed] 
16.96 

[removed] 
19.16 

[removed] 
22.31 
30. A candy bar manufacturer is interested in trying to estimate how sales are influenced by the price of their product. To do this, the company randomly chooses 6 small cities and offers the candy bar at different prices. Using candy bar sales as the dependent variable, the company will conduct a simple regression analysis on the data below.
City Price, ($) Sales
River Falls 1.20 100
Hudson 1.80 80
Ellsworth 1.80 100
Prescott 2.00 40
Rock Elm 2.00 38
Stillwater 3.00 32
What is the Ftab value for the significance test for the linear model? (alpha=0.05)
[removed] 
199.50 

[removed] 
4.89 

[removed] 
4.54 

[removed] 
7.71 

[removed] 
10.13 
31. In a oneway analysis of variance problem, there are four treatments and six observations in each treatment. The sample variances of of the four treatments are as follows: 9, 12, 3, 6.What is value of F_{max calc}? What is the tabular value of F_{max} at alpha = .05? Do we reject H_{0} for Hartley’s test at alpha = .05 ?
[removed] 
2, 10.8, fail to reject H_{0} 

[removed] 
3, 10.4, reject H_{0} 

[removed] 
4, 13.7, fail to reject H_{0} 

[removed] 
1.33, 8.38, fail to reject H_{0 } 

[removed] 
16,13.7, reject H_{0} 
32. Following partially completed two way ANOVA table is given for a two factor experiment with 4 treatments three blocks and total of 36 observations:
Source SS df MS F
Treatment 3
Block 4
Interaction 1
Error
Total
In this experiment there are _________ replications per cell. The degrees of freedom are:: ____________ for treatments, ____________ for blocks, ________________ error, and ___________ for interaction.
[removed] 
3, 3, 2, 24, 6 

[removed] 
2, 3, 2, 12, 6 

[removed] 
2, 4, 3, 15, 12 

[removed] 
3, 3, 2, 25, 6 

[removed] 
3, 6, 4, 2 
33. Using the summary information given below for shelf height in advertising, if Tukey’s hypothesis test is performed between bottom and middle shelves, where MSE = 10.5, what is the t calculated statistics value, critical value of Tukey statistic,do we reject H_{0}? (alpha =.05)
Bottom Middle Top
9 4 8
14 7 13
7 6 18
10 11 12
11
[removed] 
1.309, .5714, reject H_{0} 

[removed] 
1.309, 2.74, fail to reject H_{0} 

[removed] 
2.357, 2.74, fail to reject H_{0} 

[removed] 
2.94, 2.74, reject H_{0} 

[removed] 
2.74 , 1.309 reject H_{0} 
34. An experiment was conducted on a certain metal to determine if strength of the metal is a function of the time it is heated.Linear regression equation is:Y hat = 1 + 1X. Sum of the squared (X X bar) values is 14, MSE = .5, X bar = 3, and there are a total of 10 observations (X (time), Y (strength) pairs). Determine the 95% confidence interval for the strength, if the metal is heated for 2.5 minutes.
[removed] 
3.104 to 3.896 

[removed] 
3.05 to 3.95 

[removed] 
2.94 to 4.06 

[removed] 
1.791 to 5.209 

[removed] 
2.286 to 4.714 
35. An experiment was conducted on a certain metal to determine if strength of the metal is a function of the time it is heated.Y hat = 1+1X. Sum of the squared (X X bar) values is 14, MSE = .5, X bar = 3, and there are a total of 10 observations (X (time), Y (strength) pairs). Determine the 99% prediction interval for strength, if metal is heated for 2.5 minutes.
[removed] 
1.7909 to 5.209 

[removed] 
.992 to 6.008 

[removed] 
2.281 to 4.719 

[removed] 
1.726 to 5.724 

[removed] 
2.93 to 4.07 
NEW SUBMISSION
2. You wish to add a categorical explanatory variable with two categories to a regression model. How many dummy variables are required to represent the categories?
[removed] 
one 

[removed] 
two 

[removed] 
three 

[removed] 
four 
3. The F ratio in a completely randomized ANOVA is the ratio of
[removed] 
MSTR/MSE 

[removed] 
MST/MSE 

[removed] 
MSE/MSTR 

[removed] 
MSE/MST 
4. In an analysis of variance where the total sample size for the experiment is n_{T} and the number of populations is k, the mean square within treatments is
[removed] 
SSE/(n_{T} – k) 

[removed] 
SSTR/(n_{T} – k) 

[removed] 
SSE/(k – 1) 

[removed] 
SSE/k 
5. Exhibit 141A regression analysis resulted in the following information regarding a dependent variable (y) and an independent variable (x).
Sum (x) = 30
Sum (x^{2}) = 104
Sum (y) = 40
Sum (y^{2}) = 178
Sum (x)(y) = 134
n=10
Refer to Exhibit 141. The least squares estimate of b_{0} equals
[removed] 
1 

[removed] 
1 

[removed] 
2 

[removed] 
2 
8. Exhibit 131
SSTR = 6,750 
H_{0}: m_{1}=m_{2}=m_{3}=m_{4} 
SSE = 8,000 
H_{a}: at least one mean is different 
n_{T} = 20 

Refer to Exhibit 131. The mean square between treatments (MSTR) equals
[removed] 
400 

[removed] 
500 

[removed] 
1,687.5 

[removed] 
2,250 
9. Exhibit 133
To test whether or not there is a difference between treatments A, B, and C, a sample of 12 observations has been randomly assigned to the 3 treatments. You are given the results below.
Treatment 
Observation 

A 
20 
30 
25 
33 
B 
22 
26 
20 
28 
C 
40 
30 
28 
22 
Refer to Exhibit 133. The mean square within treatments (MSE) equals
[removed] 
1.872 

[removed] 
5.86 

[removed] 
34 

[removed] 
36 
13. A regression analysis between sales (y in $1000) and advertising (x in dollars) resulted in the following equation
y cap = 50,000 + 6 x
The above equation implies that an
[removed] 
increase of $6 in advertising is associated with an increase of $6,000 in sales 

[removed] 
increase of $1 in advertising is associated with an increase of $6 in sales 

[removed] 
increase of $1 in advertising is associated with an increase of $56,000 in sales 

[removed] 
increase of $1 in advertising is associated with an increase of $6,000 in sales 
15. Exhibit 141A regression analysis resulted in the following information regarding a dependent variable (y) and an independent variable (x).
Sum (x) = 30
Sum (x^{2}) = 104
Sum (y) = 40
Sum (y^{2}) = 178
Sum (x)(y) = 134
n=10
Refer to Exhibit 141. Interpret the slope (b_{1})
[removed] 
The value of y increases by 1 for each additional x value. 

[removed] 
The value of x increases by 1 for each additional y value. 

[removed] 
The value of y is 1 if x is 0. 

[removed] 
The value of x is 1 if y is 0. 
17. You are given the following information about y and x.
y 
x 
Dependent 
Independent 
5 
15 
7 
12 
9 
10 
11 
7 
Refer to Exhibit 142. The least squares estimate of b_{1} equals
[removed] 
0.7647 

[removed] 
0.13 

[removed] 
21.4 

[removed] 
16.412 
19. Exhibit 143
Regression analysis was applied between sales data (in $1,000s) and advertising data (in $100s) and the following information was obtained.
y cap = 12 + 1.8 x
n = 17
SSR = 225
SSE = 75
s_{b1} = 0.2683
Refer to Exhibit 143. The F statistic computed from the above data is
[removed] 
3 

[removed] 
45 

[removed] 
48 

[removed] 
Not enough information is given to answer this question. 
20. In an analysis of variance problem if SST = 120 and SSTR = 80, then SSE is
[removed] 
200 

[removed] 
40 

[removed] 
80 

[removed] 
120 
21. A least squares regression line
[removed] 
may be used to predict a value of y if the corresponding x value is given 

[removed] 
implies a causeeffect relationship between x and y 

[removed] 
can only be determined if a good linear relationship exists between x and y 

[removed] 
All of these answers are correct. 
22. Exhibit 141
A regression analysis resulted in the following information regarding a dependent variable (y) and an independent variable (x).
n = 10
Sx = 55
Sy = 55
Sx^{2} = 385
Sy^{2 }= 385
Sxy = 220
Refer to Exhibit 141. The coefficient of determination equals
[removed] 
0 

[removed] 
1 

[removed] 
+1 

[removed] 
0.5 
23. Exhibit 143
Regression analysis was applied between sales data (in $1,000s) and advertising data (in $100s) and the following information was obtained.
y cap = 12 + 1.8 x
n = 17
SSR = 225
SSE = 75
s_{b1} = 0.2683
Refer to Exhibit 143. Using a = 0.05, the critical t value for testing the significance of the slope is
[removed] 
1.753 

[removed] 
2.131 

[removed] 
1.746 

[removed] 
2.120 
Delivering a highquality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.
You have to be 100% sure of the quality of your product to give a moneyback guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.
Read moreEach paper is composed from scratch, according to your instructions. It is then checked by our plagiarismdetection software. There is no gap where plagiarism could squeeze in.
Read moreThanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.
Read moreYour email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.
Read moreBy sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.
Read more